machine learning. please explain the calculations of each partof this code (show formulas) and most important, please explain howthr calue 512 was calculated at the bottom dense layer. thankyou.
from keras import layers from keras import models model #models, Sequential() model.add (layers.Conv2D(32, (3, 3), activations’relu input_ shape- (150, 150, 3))) model.add (layers.MaxPooling2D( (2, 2))) model.add (layers.Conv2D(64, (3, 3), activation-‘relu’)) model.add (layers.MaxPooling2D((2. 2))) mode1.add(layers.Conv2D(128, (3, 3), activations’relu’)) model.add (layers.MaxPooling2D((2, 2))) mode1.add (layers.Conv2D(128, (3, 3), activation-‘relu’)) model.add (layers.MaxPooling2D((2, 2))) model.add (layers.Flatten)) model.add(layers.Dense (512, activations ‘relu))
Machine Learning Please Explain Calculations Part Code Show Formulas Important Please Expl Q37214373
OR
OR