Prove
w’x’y’z’+ w’x’yz + w’x’yz’ + w’xy’z + w’xyz’ + wxyz’ + wx’y’z’ +wx’yz = x’y’z’ + w’xy’z+ w’yz’ + xyz’ + x’yz
Solution
w’x’y’z’+ w’x’yz + w’x’yz’ + w’xy’z + w’xyz’ + wxyz’ + wx’y’z’ + wx’yz=> w’x’y’z’+ w’x’yz + w’x’yz’ + w’xy’z + w’xyz’ + wxyz’ + wx’y’z’ + wx’yz + w’xyz’ (because we can write w’xyz’ as w’xyz’ + w’xyz’)=> (w’x’y’z’+wx’y’z’) + (w’xy’z) + (w’xyz’+w’x’yz’) + (wxyz’+w’xyz’) + (w’x’yz + wx’yz) (just rearranged terms)(w’x’y’z’+wx’y’z’) is x’y’z’(w’xyz’+w’x’yz’) is w’yz’(wxyz’+w’xyz’) is xyz’(w’x’yz + wx’yz) is x’yzso, (w’x’y’z’+wx’y’z’) + (w’xy’z) + (w’xyz’+w’x’yz’) + (wxyz’+w’xyz’) + (w’x’yz
OR
OR