(Use MATLAB) Use Gaussian elimination with backward substitutionto solve the following linear system. For this problem you willhave to do scaled partial pivoting. The matrix A and the vector bare in the Matlab code shown below
A=[3 -13 9 3;-6 4 1 -18;6 -2 2 4;12 -8 6 10];
display(A);
b=[-19;-34;16;26];
display(b);
Solution
Please find the required MATLAB script as the following:
%==================================================
clear all;
clc;
% Given data
A=[3 -13 9 3;-6 4 1 -18;6 -2 2 4;12 -8 6 10];
display(A);
b=[-19;-34;16;26];
display(b);
% Preliminary calculation
n=length(A(:,1));
A=[A,b];
x=zeros(n,1);
flag=0;
NROW=1:n;
for i=1:n-1
if flag==0
M=max(abs(A(NROW(i:n),i)));
if M==0
flag=1;
else
I=find(abs(A(NROW(i:n),i))==M);
p=I(1)+i-1;
if p>i
NCOPY=NROW(i);
NROW(i)=NROW(p);
NROW(p)=NCOPY;
end
end
if flag==0
for j=i+1:n
m=A(NROW(j),i)/A(NROW(i),i);
A(NROW(j),i:n+1)=A(NROW(j),i:n+1)-m*A(NROW(i),i:n+1);
clear m;
end
end
end
end
if flag==0
if A(NROW(n),n)==0
flag=1;
end
end
if flag==0
x(n,1)=A(NROW(n),n+1)/A(NROW(n),n);
for i=n-1:-1:1
x(i,1)=(A(NROW(i),n+1)-sum(x(i+1:n,1)’.*A(NROW(i),i+1:n)))/A(NROW(i),i);
end
else
x=’no